The role of extracellular matrix in the migration and differentiation of parietal endoderm from teratocarcinoma embryoid bodies

نویسندگان

  • L B Grabel
  • T D Watts
چکیده

Embryoid bodies formed from teratocarcinoma stem cells differentiate an outer layer consisting of parietal and visceral endoderm or of visceral endoderm exclusively. We have previously shown that when these embryoid bodies are plated on collagen-coated substrates a parietal endoderm-like cell migrates onto the substrate, whereas all of the visceral endoderm remains associated with the stem cell mass, suggesting a role for substrate contact in parietal endoderm differentiation. We now identify fibronectin as the migration-promoting component in these cultures, and note that laminin and collagen type IV are 10-fold less effective at promoting both attachment and endoderm outgrowth. The RGDS tetrapeptide (arg-gly-asp-ser) from the cell attachment domain of fibronectin can specifically block attachment and outgrowth on both fibronectin- and laminin-coated substrates. In addition, the involvement of the 140-kD fibronectin receptor is demonstrated using an antibody directed against this molecule.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of the differentiation and behaviour of extra-embryonic endodermal cells by basement membranes.

Both the extracellular matrix and parathyroid hormone-related peptide (PTHrP) have been implicated in the differentiation and migration of extra-embryonic endodermal cells in the pre-implantation mammalian blastocyst. In order to define the individual roles and interactions between these factors in endodermal differentiation, we have used embryoid bodies derived from Lamc1(-/-) embryonic stem c...

متن کامل

Plasminogen activator expression in F9 teratocarcinoma embryoid bodies and their endoderm derivatives.

Plasminogen activators are believed to play an important role in tissue remodeling and cell migration. During mouse embryogenesis, visceral endoderm secretes urokinase-type plasminogen activator (uPA) whereas parietal endoderm secretes tissue-type plasminogen activator (tPA). Visceral endoderm from F9 embryoid bodies can transdifferentiate into parietal endoderm under the appropriate culture co...

متن کامل

Induction of the expression of retinol-binding protein and transthyretin in F9 embryonal carcinoma cells differentiated to embryoid bodies.

Studies were conducted to determine if the expression of the gene for retinol-binding protein (RBP) and/or transthyretin (TTR) could be induced upon differentiation of F9 teratocarcinoma cells to either visceral endoderm or parietal endoderm. Both TTR mRNA and RBP mRNA were undetectable in the undifferentiated F9 stem cells and in F9 cells differentiated to parietal endoderm. However, TTR mRNA ...

متن کامل

Molecular analysis of early growth-associated events during the differentiation of F9 cells into embryoid bodies.

Mouse F9 teratocarcinoma cell lines can be induced to differentiate into either parietal endoderm or embryoid bodies which contain visceral endoderm-like cells. The nature of the early molecular events involved in these two differentiation pathways has not yet been fully elucidated. Moreover, since the process of differentiation is often accompanied by changes in cell growth, it is often diffic...

متن کامل

Induction of yolk sac endoderm in GATA-4-deficient embryoid bodies by retinoic acid

GATA-4, a transcription factor implicated in lineage determination, is expressed in both parietal and visceral endoderm of the early mouse embryo. In embryonic stem cell-derived embryoid bodies, GATA-4 mRNA is first detectable at 4-5 days of differentiation and is confined to visceral endoderm cells on the surface of the bodies. Previously we reported that targeted mutagenesis of the Gata4 gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 105  شماره 

صفحات  -

تاریخ انتشار 1987